// Copyright (c) 2011, Chris Umbel, James Coglan // Polygon class - depends on Vector, Plane, Polygon.Vertex and LinkedList. var Sylvester = require('./sylvester'); function Polygon() {} Polygon.prototype = { // Returns the vertex at the given position on the vertex list, numbered from 1. v: function(i) { return this.vertices.at(i - 1).data; }, // Returns the node in the vertices linked list that refers to the given vertex. nodeFor: function(vertex) { return this.vertices.withData(vertex); }, // Returns a new polygon with the same vertices as the receiver. The vertices // will not be duplicates, they refer to the same objects as the vertices in this // polygon, but the linked list and nodes used to point to them are separate and // can be manipulated independently of this one. dup: function() { return Polygon.create(this.vertices, this.plane); }, // Translates the polygon by the given vector and returns the polygon. translate: function(vector) { var P = vector.elements || vector; this.vertices.each(function(node) { var E = node.data.elements; node.data.setElements([E[0] + P[0], E[1] + P[1], E[2] + (P[2] || 0)]); }); this.plane = this.plane.translate(vector); this.updateTrianglePlanes(function(plane) { return plane.translate(vector); }); return this; }, // Rotates the polygon about the given line and returns the polygon. rotate: function(t, line) { var R = Matrix.Rotation(t, line.direction); this.vertices.each(function(node) { node.data.setElements(node.data.rotate(R, line).elements); }); this.plane = this.plane.rotate(R, line); this.updateTrianglePlanes(function(plane) { return plane.rotate(R, line); }); return this; }, // Scales the polygon relative to the given point and returns the polygon. scale: function(k, point) { var P = point.elements || point; this.vertices.each(function(node) { var E = node.data.elements; node.data.setElements([ P[0] + k * (E[0] - P[0]), P[1] + k * (E[1] - P[1]), (P[2] || 0) + k * (E[2] - (P[2] || 0)) ]); }); var anchor = this.vertices.first.data; this.plane.anchor.setElements(anchor); this.updateTrianglePlanes(function(plane) { return Plane.create(anchor, plane.normal); }); return this; }, // Updates the plane properties of all the cached triangles belonging to // the polygon according to the given function. For example, suppose you // just rotated the polygon, you should call: // // poly.updateTrianglePlanes(function(plane) { return plane.rotate(t, line); }); // // This method is called automatically by Polygon.translate, Polygon.rotate // and Polygon.scale transformation methods. updateTrianglePlanes: function(fn) { var i; if (this.cached.triangles !== null) { i = this.cached.triangles.length; while (i--) { this.cached.triangles[i].plane = fn(this.cached.triangles[i].plane); } } if (this.cached.surfaceIntegralElements !== null) { i = this.cached.surfaceIntegralElements.length; while (i--) { this.cached.surfaceIntegralElements[i].plane = fn(this.cached.surfaceIntegralElements[i].plane); } } }, // Returns true iff the polygon is a triangle isTriangle: function() { return this.vertices.length == 3; }, // Returns a collection of triangles used for calculating area and center of mass. // Some of the triangles will not lie inside the polygon - this collection is essentially // a series of itervals in a surface integral, so some are 'negative'. If you want the // polygon broken into constituent triangles, use toTriangles(). This method is used // because it's much faster than toTriangles(). // The triangles generated share vertices with the original polygon, so they transform // with the polygon. They are cached after first calculation and should remain in sync // with changes to the parent polygon. trianglesForSurfaceIntegral: function() { if (this.cached.surfaceIntegralElements !== null) { return this.cached.surfaceIntegralElements; } var triangles = []; var firstVertex = this.vertices.first.data; var plane = this.plane; this.vertices.each(function(node, i) { if (i < 2) { return; } var points = [firstVertex, node.prev.data, node.data]; // If the vertices lie on a straigh line, give the polygon's own plane. If the // element has no area, it doesn't matter which way its normal faces. triangles.push(Polygon.create(points, Plane.fromPoints(points) || plane)); }); return this.setCache('surfaceIntegralElements', triangles); }, // Returns the area of the polygon. Requires that the polygon // be converted to triangles, so use with caution. area: function() { if (this.isTriangle()) { // Area is half the modulus of the cross product of two sides var A = this.vertices.first, B = A.next, C = B.next; A = A.data.elements; B = B.data.elements; C = C.data.elements; return 0.5 * Vector.create([ (A[1] - B[1]) * (C[2] - B[2]) - (A[2] - B[2]) * (C[1] - B[1]), (A[2] - B[2]) * (C[0] - B[0]) - (A[0] - B[0]) * (C[2] - B[2]), (A[0] - B[0]) * (C[1] - B[1]) - (A[1] - B[1]) * (C[0] - B[0]) ]).modulus(); } else { var trigs = this.trianglesForSurfaceIntegral(), area = 0; var i = trigs.length; while (i--) { area += trigs[i].area() * trigs[i].plane.normal.dot(this.plane.normal); } return area; } }, // Returns the centroid of the polygon. Requires division into // triangles - use with caution centroid: function() { if (this.isTriangle()) { var A = this.v(1).elements, B = this.v(2).elements, C = this.v(3).elements; return Vector.create([(A[0] + B[0] + C[0])/3, (A[1] + B[1] + C[1])/3, (A[2] + B[2] + C[2])/3]); } else { var A, M = 0, V = Vector.Zero(3), P, C, trigs = this.trianglesForSurfaceIntegral(); var i = trigs.length; while (i--) { A = trigs[i].area() * trigs[i].plane.normal.dot(this.plane.normal); M += A; P = V.elements; C = trigs[i].centroid().elements; V.setElements([P[0] + C[0] * A, P[1] + C[1] * A, P[2] + C[2] * A]); } return V.x(1/M); } }, // Returns the polygon's projection on the given plane as another polygon projectionOn: function(plane) { var points = []; this.vertices.each(function(node) { points.push(plane.pointClosestTo(node.data)); }); return Polygon.create(points); }, // Removes the given vertex from the polygon as long as it's not triangular. removeVertex: function(vertex) { if (this.isTriangle()) { return; } var node = this.nodeFor(vertex); if (node === null) { return null; } this.clearCache(); // Previous and next entries in the main vertex list var prev = node.prev, next = node.next; var prevWasConvex = prev.data.isConvex(this); var nextWasConvex = next.data.isConvex(this); if (node.data.isConvex(this)) { this.convexVertices.remove(this.convexVertices.withData(node.data)); } else { this.reflexVertices.remove(this.reflexVertices.withData(node.data)); } this.vertices.remove(node); // Deal with previous vertex's change of class if (prevWasConvex != prev.data.isConvex(this)) { if (prevWasConvex) { this.convexVertices.remove(this.convexVertices.withData(prev.data)); this.reflexVertices.append(new LinkedList.Node(prev.data)); } else { this.reflexVertices.remove(this.reflexVertices.withData(prev.data)); this.convexVertices.append(new LinkedList.Node(prev.data)); } } // Deal with next vertex's change of class if (nextWasConvex != next.data.isConvex(this)) { if (nextWasConvex) { this.convexVertices.remove(this.convexVertices.withData(next.data)); this.reflexVertices.append(new LinkedList.Node(next.data)); } else { this.reflexVertices.remove(this.reflexVertices.withData(next.data)); this.convexVertices.append(new LinkedList.Node(next.data)); } } return this; }, // Returns true iff the point is strictly inside the polygon contains: function(point) { return this.containsByWindingNumber(point); }, // Returns true iff the given point is strictly inside the polygon using the winding number method containsByWindingNumber: function(point) { var P = point.elements || point; if (!this.plane.contains(P)) { return false; } if (this.hasEdgeContaining(P)) { return false; } var V, W, A, B, theta = 0, dt, loops = 0, self = this; this.vertices.each(function(node) { V = node.data.elements; W = node.next.data.elements; A = Vector.create([V[0] - P[0], V[1] - P[1], V[2] - (P[2] || 0)]); B = Vector.create([W[0] - P[0], W[1] - P[1], W[2] - (P[2] || 0)]); dt = A.angleFrom(B); if (dt === null || dt === 0) { return; } theta += (A.cross(B).isParallelTo(self.plane.normal) ? 1 : -1) * dt; if (theta >= 2 * Math.PI - Sylvester.precision) { loops++; theta -= 2 * Math.PI; } if (theta <= -2 * Math.PI + Sylvester.precision) { loops--; theta += 2 * Math.PI; } }); return loops != 0; }, // Returns true if the given point lies on an edge of the polygon // May cause problems with 'hole-joining' edges hasEdgeContaining: function(point) { var P = (point.elements || point); var success = false; this.vertices.each(function(node) { if (Line.Segment.create(node.data, node.next.data).contains(P)) { success = true; } }); return success; }, // Returns an array of 3-vertex polygons that the original has been split into // Stores the first calculation for faster retrieval later on toTriangles: function() { if (this.cached.triangles !== null) { return this.cached.triangles; } return this.setCache('triangles', this.triangulateByEarClipping()); }, // Implementation of ear clipping algorithm // Found in 'Triangulation by ear clipping', by David Eberly // at http://www.geometrictools.com // This will not deal with overlapping sections - contruct your polygons sensibly triangulateByEarClipping: function() { var poly = this.dup(), triangles = [], success, convexNode, mainNode, trig; while (!poly.isTriangle()) { success = false; while (!success) { success = true; // Ear tips must be convex vertices - let's pick one at random convexNode = poly.convexVertices.randomNode(); mainNode = poly.vertices.withData(convexNode.data); // For convex vertices, this order will always be anticlockwise trig = Polygon.create([mainNode.data, mainNode.next.data, mainNode.prev.data], this.plane); // Now test whether any reflex vertices lie within the ear poly.reflexVertices.each(function(node) { // Don't test points belonging to this triangle. node won't be // equal to convexNode as node is reflex and vertex is convex. if (node.data != mainNode.prev.data && node.data != mainNode.next.data) { if (trig.contains(node.data) || trig.hasEdgeContaining(node.data)) { success = false; } } }); } triangles.push(trig); poly.removeVertex(mainNode.data); } // Need to do this to renumber the remaining vertices triangles.push(Polygon.create(poly.vertices, this.plane)); return triangles; }, // Sets the polygon's vertices setVertices: function(points, plane) { var pointSet = points.toArray ? points.toArray() : points; this.plane = (plane && plane.normal) ? plane.dup() : Plane.fromPoints(pointSet); if (this.plane === null) { return null; } this.vertices = new LinkedList.Circular(); // Construct linked list of vertices. If each point is already a polygon // vertex, we reference it rather than creating a new vertex. var i = pointSet.length, newVertex; while (i--) { newVertex = pointSet[i].isConvex ? pointSet[i] : new Polygon.Vertex(pointSet[i]); this.vertices.prepend(new LinkedList.Node(newVertex)); } this.clearCache(); this.populateVertexTypeLists(); return this; }, // Constructs lists of convex and reflex vertices based on the main vertex list. populateVertexTypeLists: function() { this.convexVertices = new LinkedList.Circular(); this.reflexVertices = new LinkedList.Circular(); var self = this; this.vertices.each(function(node) { // Split vertices into convex / reflex groups // The LinkedList.Node class wraps each vertex so it can belong to many linked lists. self[node.data.type(self) + 'Vertices'].append(new LinkedList.Node(node.data)); }); }, // Gives the polygon its own local set of vertex points, allowing it to be // transformed independently of polygons it may be sharing vertices with. copyVertices: function() { this.clearCache(); this.vertices.each(function(node) { node.data = new Polygon.Vertex(node.data); }); this.populateVertexTypeLists(); }, // Clear any cached properties clearCache: function() { this.cached = { triangles: null, surfaceIntegralElements: null }; }, // Set cached value and return the value setCache: function(key, value) { this.cached[key] = value; return value; }, // Returns a string representation of the polygon's vertices. inspect: function() { var points = []; this.vertices.each(function(node) { points.push(node.data.inspect()); }); return points.join(' -> '); } }; // Constructor function Polygon.create = function(points, plane) { var P = new Polygon(); return P.setVertices(points, plane); }; module.exports = Polygon;