// Copyright (c) 2011, Chris Umbel, James Coglan // Plane class - depends on Vector. Some methods require Matrix and Line. var Vector = require('./vector'); var Matrix = require('./matrix'); var Line = require('./line'); var Sylvester = require('./sylvester'); function Plane() {} Plane.prototype = { // Returns true iff the plane occupies the same space as the argument eql: function(plane) { return (this.contains(plane.anchor) && this.isParallelTo(plane)); }, // Returns a copy of the plane dup: function() { return Plane.create(this.anchor, this.normal); }, // Returns the result of translating the plane by the given vector translate: function(vector) { var V = vector.elements || vector; return Plane.create([ this.anchor.elements[0] + V[0], this.anchor.elements[1] + V[1], this.anchor.elements[2] + (V[2] || 0) ], this.normal); }, // Returns true iff the plane is parallel to the argument. Will return true // if the planes are equal, or if you give a line and it lies in the plane. isParallelTo: function(obj) { var theta; if (obj.normal) { // obj is a plane theta = this.normal.angleFrom(obj.normal); return (Math.abs(theta) <= Sylvester.precision || Math.abs(Math.PI - theta) <= Sylvester.precision); } else if (obj.direction) { // obj is a line return this.normal.isPerpendicularTo(obj.direction); } return null; }, // Returns true iff the receiver is perpendicular to the argument isPerpendicularTo: function(plane) { var theta = this.normal.angleFrom(plane.normal); return (Math.abs(Math.PI/2 - theta) <= Sylvester.precision); }, // Returns the plane's distance from the given object (point, line or plane) distanceFrom: function(obj) { if (this.intersects(obj) || this.contains(obj)) { return 0; } if (obj.anchor) { // obj is a plane or line var A = this.anchor.elements, B = obj.anchor.elements, N = this.normal.elements; return Math.abs((A[0] - B[0]) * N[0] + (A[1] - B[1]) * N[1] + (A[2] - B[2]) * N[2]); } else { // obj is a point var P = obj.elements || obj; var A = this.anchor.elements, N = this.normal.elements; return Math.abs((A[0] - P[0]) * N[0] + (A[1] - P[1]) * N[1] + (A[2] - (P[2] || 0)) * N[2]); } }, // Returns true iff the plane contains the given point or line contains: function(obj) { if (obj.normal) { return null; } if (obj.direction) { return (this.contains(obj.anchor) && this.contains(obj.anchor.add(obj.direction))); } else { var P = obj.elements || obj; var A = this.anchor.elements, N = this.normal.elements; var diff = Math.abs(N[0]*(A[0] - P[0]) + N[1]*(A[1] - P[1]) + N[2]*(A[2] - (P[2] || 0))); return (diff <= Sylvester.precision); } }, // Returns true iff the plane has a unique point/line of intersection with the argument intersects: function(obj) { if (typeof(obj.direction) == 'undefined' && typeof(obj.normal) == 'undefined') { return null; } return !this.isParallelTo(obj); }, // Returns the unique intersection with the argument, if one exists. The result // will be a vector if a line is supplied, and a line if a plane is supplied. intersectionWith: function(obj) { if (!this.intersects(obj)) { return null; } if (obj.direction) { // obj is a line var A = obj.anchor.elements, D = obj.direction.elements, P = this.anchor.elements, N = this.normal.elements; var multiplier = (N[0]*(P[0]-A[0]) + N[1]*(P[1]-A[1]) + N[2]*(P[2]-A[2])) / (N[0]*D[0] + N[1]*D[1] + N[2]*D[2]); return Vector.create([A[0] + D[0]*multiplier, A[1] + D[1]*multiplier, A[2] + D[2]*multiplier]); } else if (obj.normal) { // obj is a plane var direction = this.normal.cross(obj.normal).toUnitVector(); // To find an anchor point, we find one co-ordinate that has a value // of zero somewhere on the intersection, and remember which one we picked var N = this.normal.elements, A = this.anchor.elements, O = obj.normal.elements, B = obj.anchor.elements; var solver = Matrix.Zero(2,2), i = 0; while (solver.isSingular()) { i++; solver = Matrix.create([ [ N[i%3], N[(i+1)%3] ], [ O[i%3], O[(i+1)%3] ] ]); } // Then we solve the simultaneous equations in the remaining dimensions var inverse = solver.inverse().elements; var x = N[0]*A[0] + N[1]*A[1] + N[2]*A[2]; var y = O[0]*B[0] + O[1]*B[1] + O[2]*B[2]; var intersection = [ inverse[0][0] * x + inverse[0][1] * y, inverse[1][0] * x + inverse[1][1] * y ]; var anchor = []; for (var j = 1; j <= 3; j++) { // This formula picks the right element from intersection by // cycling depending on which element we set to zero above anchor.push((i == j) ? 0 : intersection[(j + (5 - i)%3)%3]); } return Line.create(anchor, direction); } }, // Returns the point in the plane closest to the given point pointClosestTo: function(point) { var P = point.elements || point; var A = this.anchor.elements, N = this.normal.elements; var dot = (A[0] - P[0]) * N[0] + (A[1] - P[1]) * N[1] + (A[2] - (P[2] || 0)) * N[2]; return Vector.create([P[0] + N[0] * dot, P[1] + N[1] * dot, (P[2] || 0) + N[2] * dot]); }, // Returns a copy of the plane, rotated by t radians about the given line // See notes on Line#rotate. rotate: function(t, line) { var R = t.determinant ? t.elements : Matrix.Rotation(t, line.direction).elements; var C = line.pointClosestTo(this.anchor).elements; var A = this.anchor.elements, N = this.normal.elements; var C1 = C[0], C2 = C[1], C3 = C[2], A1 = A[0], A2 = A[1], A3 = A[2]; var x = A1 - C1, y = A2 - C2, z = A3 - C3; return Plane.create([ C1 + R[0][0] * x + R[0][1] * y + R[0][2] * z, C2 + R[1][0] * x + R[1][1] * y + R[1][2] * z, C3 + R[2][0] * x + R[2][1] * y + R[2][2] * z ], [ R[0][0] * N[0] + R[0][1] * N[1] + R[0][2] * N[2], R[1][0] * N[0] + R[1][1] * N[1] + R[1][2] * N[2], R[2][0] * N[0] + R[2][1] * N[1] + R[2][2] * N[2] ]); }, // Returns the reflection of the plane in the given point, line or plane. reflectionIn: function(obj) { if (obj.normal) { // obj is a plane var A = this.anchor.elements, N = this.normal.elements; var A1 = A[0], A2 = A[1], A3 = A[2], N1 = N[0], N2 = N[1], N3 = N[2]; var newA = this.anchor.reflectionIn(obj).elements; // Add the plane's normal to its anchor, then mirror that in the other plane var AN1 = A1 + N1, AN2 = A2 + N2, AN3 = A3 + N3; var Q = obj.pointClosestTo([AN1, AN2, AN3]).elements; var newN = [Q[0] + (Q[0] - AN1) - newA[0], Q[1] + (Q[1] - AN2) - newA[1], Q[2] + (Q[2] - AN3) - newA[2]]; return Plane.create(newA, newN); } else if (obj.direction) { // obj is a line return this.rotate(Math.PI, obj); } else { // obj is a point var P = obj.elements || obj; return Plane.create(this.anchor.reflectionIn([P[0], P[1], (P[2] || 0)]), this.normal); } }, // Sets the anchor point and normal to the plane. If three arguments are specified, // the normal is calculated by assuming the three points should lie in the same plane. // If only two are sepcified, the second is taken to be the normal. Normal vector is // normalised before storage. setVectors: function(anchor, v1, v2) { anchor = Vector.create(anchor); anchor = anchor.to3D(); if (anchor === null) { return null; } v1 = Vector.create(v1); v1 = v1.to3D(); if (v1 === null) { return null; } if (typeof(v2) == 'undefined') { v2 = null; } else { v2 = Vector.create(v2); v2 = v2.to3D(); if (v2 === null) { return null; } } var A1 = anchor.elements[0], A2 = anchor.elements[1], A3 = anchor.elements[2]; var v11 = v1.elements[0], v12 = v1.elements[1], v13 = v1.elements[2]; var normal, mod; if (v2 !== null) { var v21 = v2.elements[0], v22 = v2.elements[1], v23 = v2.elements[2]; normal = Vector.create([ (v12 - A2) * (v23 - A3) - (v13 - A3) * (v22 - A2), (v13 - A3) * (v21 - A1) - (v11 - A1) * (v23 - A3), (v11 - A1) * (v22 - A2) - (v12 - A2) * (v21 - A1) ]); mod = normal.modulus(); if (mod === 0) { return null; } normal = Vector.create([normal.elements[0] / mod, normal.elements[1] / mod, normal.elements[2] / mod]); } else { mod = Math.sqrt(v11*v11 + v12*v12 + v13*v13); if (mod === 0) { return null; } normal = Vector.create([v1.elements[0] / mod, v1.elements[1] / mod, v1.elements[2] / mod]); } this.anchor = anchor; this.normal = normal; return this; } }; // Constructor function Plane.create = function(anchor, v1, v2) { var P = new Plane(); return P.setVectors(anchor, v1, v2); }; // X-Y-Z planes Plane.XY = Plane.create(Vector.Zero(3), Vector.k); Plane.YZ = Plane.create(Vector.Zero(3), Vector.i); Plane.ZX = Plane.create(Vector.Zero(3), Vector.j); Plane.YX = Plane.XY; Plane.ZY = Plane.YZ; Plane.XZ = Plane.ZX; // Returns the plane containing the given points (can be arrays as // well as vectors). If the points are not coplanar, returns null. Plane.fromPoints = function(points) { var np = points.length, list = [], i, P, n, N, A, B, C, D, theta, prevN, totalN = Vector.Zero(3); for (i = 0; i < np; i++) { P = Vector.create(points[i]).to3D(); if (P === null) { return null; } list.push(P); n = list.length; if (n > 2) { // Compute plane normal for the latest three points A = list[n-1].elements; B = list[n-2].elements; C = list[n-3].elements; N = Vector.create([ (A[1] - B[1]) * (C[2] - B[2]) - (A[2] - B[2]) * (C[1] - B[1]), (A[2] - B[2]) * (C[0] - B[0]) - (A[0] - B[0]) * (C[2] - B[2]), (A[0] - B[0]) * (C[1] - B[1]) - (A[1] - B[1]) * (C[0] - B[0]) ]).toUnitVector(); if (n > 3) { // If the latest normal is not (anti)parallel to the previous one, we've strayed off the plane. // This might be a slightly long-winded way of doing things, but we need the sum of all the normals // to find which way the plane normal should point so that the points form an anticlockwise list. theta = N.angleFrom(prevN); if (theta !== null) { if (!(Math.abs(theta) <= Sylvester.precision || Math.abs(theta - Math.PI) <= Sylvester.precision)) { return null; } } } totalN = totalN.add(N); prevN = N; } } // We need to add in the normals at the start and end points, which the above misses out A = list[1].elements; B = list[0].elements; C = list[n-1].elements; D = list[n-2].elements; totalN = totalN.add(Vector.create([ (A[1] - B[1]) * (C[2] - B[2]) - (A[2] - B[2]) * (C[1] - B[1]), (A[2] - B[2]) * (C[0] - B[0]) - (A[0] - B[0]) * (C[2] - B[2]), (A[0] - B[0]) * (C[1] - B[1]) - (A[1] - B[1]) * (C[0] - B[0]) ]).toUnitVector()).add(Vector.create([ (B[1] - C[1]) * (D[2] - C[2]) - (B[2] - C[2]) * (D[1] - C[1]), (B[2] - C[2]) * (D[0] - C[0]) - (B[0] - C[0]) * (D[2] - C[2]), (B[0] - C[0]) * (D[1] - C[1]) - (B[1] - C[1]) * (D[0] - C[0]) ]).toUnitVector()); return Plane.create(list[0], totalN); }; module.exports = Plane;