7fife-backend/node_modules/sylvester/lib/node-sylvester/plane.js

275 lines
11 KiB
JavaScript
Raw Permalink Normal View History

2024-03-07 13:01:44 +00:00
// Copyright (c) 2011, Chris Umbel, James Coglan
// Plane class - depends on Vector. Some methods require Matrix and Line.
var Vector = require('./vector');
var Matrix = require('./matrix');
var Line = require('./line');
var Sylvester = require('./sylvester');
function Plane() {}
Plane.prototype = {
// Returns true iff the plane occupies the same space as the argument
eql: function(plane) {
return (this.contains(plane.anchor) && this.isParallelTo(plane));
},
// Returns a copy of the plane
dup: function() {
return Plane.create(this.anchor, this.normal);
},
// Returns the result of translating the plane by the given vector
translate: function(vector) {
var V = vector.elements || vector;
return Plane.create([
this.anchor.elements[0] + V[0],
this.anchor.elements[1] + V[1],
this.anchor.elements[2] + (V[2] || 0)
], this.normal);
},
// Returns true iff the plane is parallel to the argument. Will return true
// if the planes are equal, or if you give a line and it lies in the plane.
isParallelTo: function(obj) {
var theta;
if (obj.normal) {
// obj is a plane
theta = this.normal.angleFrom(obj.normal);
return (Math.abs(theta) <= Sylvester.precision || Math.abs(Math.PI - theta) <= Sylvester.precision);
} else if (obj.direction) {
// obj is a line
return this.normal.isPerpendicularTo(obj.direction);
}
return null;
},
// Returns true iff the receiver is perpendicular to the argument
isPerpendicularTo: function(plane) {
var theta = this.normal.angleFrom(plane.normal);
return (Math.abs(Math.PI/2 - theta) <= Sylvester.precision);
},
// Returns the plane's distance from the given object (point, line or plane)
distanceFrom: function(obj) {
if (this.intersects(obj) || this.contains(obj)) { return 0; }
if (obj.anchor) {
// obj is a plane or line
var A = this.anchor.elements, B = obj.anchor.elements, N = this.normal.elements;
return Math.abs((A[0] - B[0]) * N[0] + (A[1] - B[1]) * N[1] + (A[2] - B[2]) * N[2]);
} else {
// obj is a point
var P = obj.elements || obj;
var A = this.anchor.elements, N = this.normal.elements;
return Math.abs((A[0] - P[0]) * N[0] + (A[1] - P[1]) * N[1] + (A[2] - (P[2] || 0)) * N[2]);
}
},
// Returns true iff the plane contains the given point or line
contains: function(obj) {
if (obj.normal) { return null; }
if (obj.direction) {
return (this.contains(obj.anchor) && this.contains(obj.anchor.add(obj.direction)));
} else {
var P = obj.elements || obj;
var A = this.anchor.elements, N = this.normal.elements;
var diff = Math.abs(N[0]*(A[0] - P[0]) + N[1]*(A[1] - P[1]) + N[2]*(A[2] - (P[2] || 0)));
return (diff <= Sylvester.precision);
}
},
// Returns true iff the plane has a unique point/line of intersection with the argument
intersects: function(obj) {
if (typeof(obj.direction) == 'undefined' && typeof(obj.normal) == 'undefined') { return null; }
return !this.isParallelTo(obj);
},
// Returns the unique intersection with the argument, if one exists. The result
// will be a vector if a line is supplied, and a line if a plane is supplied.
intersectionWith: function(obj) {
if (!this.intersects(obj)) { return null; }
if (obj.direction) {
// obj is a line
var A = obj.anchor.elements, D = obj.direction.elements,
P = this.anchor.elements, N = this.normal.elements;
var multiplier = (N[0]*(P[0]-A[0]) + N[1]*(P[1]-A[1]) + N[2]*(P[2]-A[2])) / (N[0]*D[0] + N[1]*D[1] + N[2]*D[2]);
return Vector.create([A[0] + D[0]*multiplier, A[1] + D[1]*multiplier, A[2] + D[2]*multiplier]);
} else if (obj.normal) {
// obj is a plane
var direction = this.normal.cross(obj.normal).toUnitVector();
// To find an anchor point, we find one co-ordinate that has a value
// of zero somewhere on the intersection, and remember which one we picked
var N = this.normal.elements, A = this.anchor.elements,
O = obj.normal.elements, B = obj.anchor.elements;
var solver = Matrix.Zero(2,2), i = 0;
while (solver.isSingular()) {
i++;
solver = Matrix.create([
[ N[i%3], N[(i+1)%3] ],
[ O[i%3], O[(i+1)%3] ]
]);
}
// Then we solve the simultaneous equations in the remaining dimensions
var inverse = solver.inverse().elements;
var x = N[0]*A[0] + N[1]*A[1] + N[2]*A[2];
var y = O[0]*B[0] + O[1]*B[1] + O[2]*B[2];
var intersection = [
inverse[0][0] * x + inverse[0][1] * y,
inverse[1][0] * x + inverse[1][1] * y
];
var anchor = [];
for (var j = 1; j <= 3; j++) {
// This formula picks the right element from intersection by
// cycling depending on which element we set to zero above
anchor.push((i == j) ? 0 : intersection[(j + (5 - i)%3)%3]);
}
return Line.create(anchor, direction);
}
},
// Returns the point in the plane closest to the given point
pointClosestTo: function(point) {
var P = point.elements || point;
var A = this.anchor.elements, N = this.normal.elements;
var dot = (A[0] - P[0]) * N[0] + (A[1] - P[1]) * N[1] + (A[2] - (P[2] || 0)) * N[2];
return Vector.create([P[0] + N[0] * dot, P[1] + N[1] * dot, (P[2] || 0) + N[2] * dot]);
},
// Returns a copy of the plane, rotated by t radians about the given line
// See notes on Line#rotate.
rotate: function(t, line) {
var R = t.determinant ? t.elements : Matrix.Rotation(t, line.direction).elements;
var C = line.pointClosestTo(this.anchor).elements;
var A = this.anchor.elements, N = this.normal.elements;
var C1 = C[0], C2 = C[1], C3 = C[2], A1 = A[0], A2 = A[1], A3 = A[2];
var x = A1 - C1, y = A2 - C2, z = A3 - C3;
return Plane.create([
C1 + R[0][0] * x + R[0][1] * y + R[0][2] * z,
C2 + R[1][0] * x + R[1][1] * y + R[1][2] * z,
C3 + R[2][0] * x + R[2][1] * y + R[2][2] * z
], [
R[0][0] * N[0] + R[0][1] * N[1] + R[0][2] * N[2],
R[1][0] * N[0] + R[1][1] * N[1] + R[1][2] * N[2],
R[2][0] * N[0] + R[2][1] * N[1] + R[2][2] * N[2]
]);
},
// Returns the reflection of the plane in the given point, line or plane.
reflectionIn: function(obj) {
if (obj.normal) {
// obj is a plane
var A = this.anchor.elements, N = this.normal.elements;
var A1 = A[0], A2 = A[1], A3 = A[2], N1 = N[0], N2 = N[1], N3 = N[2];
var newA = this.anchor.reflectionIn(obj).elements;
// Add the plane's normal to its anchor, then mirror that in the other plane
var AN1 = A1 + N1, AN2 = A2 + N2, AN3 = A3 + N3;
var Q = obj.pointClosestTo([AN1, AN2, AN3]).elements;
var newN = [Q[0] + (Q[0] - AN1) - newA[0], Q[1] + (Q[1] - AN2) - newA[1], Q[2] + (Q[2] - AN3) - newA[2]];
return Plane.create(newA, newN);
} else if (obj.direction) {
// obj is a line
return this.rotate(Math.PI, obj);
} else {
// obj is a point
var P = obj.elements || obj;
return Plane.create(this.anchor.reflectionIn([P[0], P[1], (P[2] || 0)]), this.normal);
}
},
// Sets the anchor point and normal to the plane. If three arguments are specified,
// the normal is calculated by assuming the three points should lie in the same plane.
// If only two are sepcified, the second is taken to be the normal. Normal vector is
// normalised before storage.
setVectors: function(anchor, v1, v2) {
anchor = Vector.create(anchor);
anchor = anchor.to3D(); if (anchor === null) { return null; }
v1 = Vector.create(v1);
v1 = v1.to3D(); if (v1 === null) { return null; }
if (typeof(v2) == 'undefined') {
v2 = null;
} else {
v2 = Vector.create(v2);
v2 = v2.to3D(); if (v2 === null) { return null; }
}
var A1 = anchor.elements[0], A2 = anchor.elements[1], A3 = anchor.elements[2];
var v11 = v1.elements[0], v12 = v1.elements[1], v13 = v1.elements[2];
var normal, mod;
if (v2 !== null) {
var v21 = v2.elements[0], v22 = v2.elements[1], v23 = v2.elements[2];
normal = Vector.create([
(v12 - A2) * (v23 - A3) - (v13 - A3) * (v22 - A2),
(v13 - A3) * (v21 - A1) - (v11 - A1) * (v23 - A3),
(v11 - A1) * (v22 - A2) - (v12 - A2) * (v21 - A1)
]);
mod = normal.modulus();
if (mod === 0) { return null; }
normal = Vector.create([normal.elements[0] / mod, normal.elements[1] / mod, normal.elements[2] / mod]);
} else {
mod = Math.sqrt(v11*v11 + v12*v12 + v13*v13);
if (mod === 0) { return null; }
normal = Vector.create([v1.elements[0] / mod, v1.elements[1] / mod, v1.elements[2] / mod]);
}
this.anchor = anchor;
this.normal = normal;
return this;
}
};
// Constructor function
Plane.create = function(anchor, v1, v2) {
var P = new Plane();
return P.setVectors(anchor, v1, v2);
};
// X-Y-Z planes
Plane.XY = Plane.create(Vector.Zero(3), Vector.k);
Plane.YZ = Plane.create(Vector.Zero(3), Vector.i);
Plane.ZX = Plane.create(Vector.Zero(3), Vector.j);
Plane.YX = Plane.XY; Plane.ZY = Plane.YZ; Plane.XZ = Plane.ZX;
// Returns the plane containing the given points (can be arrays as
// well as vectors). If the points are not coplanar, returns null.
Plane.fromPoints = function(points) {
var np = points.length, list = [], i, P, n, N, A, B, C, D, theta, prevN, totalN = Vector.Zero(3);
for (i = 0; i < np; i++) {
P = Vector.create(points[i]).to3D();
if (P === null) { return null; }
list.push(P);
n = list.length;
if (n > 2) {
// Compute plane normal for the latest three points
A = list[n-1].elements; B = list[n-2].elements; C = list[n-3].elements;
N = Vector.create([
(A[1] - B[1]) * (C[2] - B[2]) - (A[2] - B[2]) * (C[1] - B[1]),
(A[2] - B[2]) * (C[0] - B[0]) - (A[0] - B[0]) * (C[2] - B[2]),
(A[0] - B[0]) * (C[1] - B[1]) - (A[1] - B[1]) * (C[0] - B[0])
]).toUnitVector();
if (n > 3) {
// If the latest normal is not (anti)parallel to the previous one, we've strayed off the plane.
// This might be a slightly long-winded way of doing things, but we need the sum of all the normals
// to find which way the plane normal should point so that the points form an anticlockwise list.
theta = N.angleFrom(prevN);
if (theta !== null) {
if (!(Math.abs(theta) <= Sylvester.precision || Math.abs(theta - Math.PI) <= Sylvester.precision)) { return null; }
}
}
totalN = totalN.add(N);
prevN = N;
}
}
// We need to add in the normals at the start and end points, which the above misses out
A = list[1].elements; B = list[0].elements; C = list[n-1].elements; D = list[n-2].elements;
totalN = totalN.add(Vector.create([
(A[1] - B[1]) * (C[2] - B[2]) - (A[2] - B[2]) * (C[1] - B[1]),
(A[2] - B[2]) * (C[0] - B[0]) - (A[0] - B[0]) * (C[2] - B[2]),
(A[0] - B[0]) * (C[1] - B[1]) - (A[1] - B[1]) * (C[0] - B[0])
]).toUnitVector()).add(Vector.create([
(B[1] - C[1]) * (D[2] - C[2]) - (B[2] - C[2]) * (D[1] - C[1]),
(B[2] - C[2]) * (D[0] - C[0]) - (B[0] - C[0]) * (D[2] - C[2]),
(B[0] - C[0]) * (D[1] - C[1]) - (B[1] - C[1]) * (D[0] - C[0])
]).toUnitVector());
return Plane.create(list[0], totalN);
};
module.exports = Plane;